Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38630402

RESUMO

Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.

2.
Chemosphere ; 352: 141488, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368960

RESUMO

By assessing the changes in stable isotope compositions within individual pesticide molecules, Compound Specific Isotope Analysis (CSIA) holds the potential to identify and differentiate sources and quantify pesticide degradation in the environment. However, the environmental application of pesticide CSIA is limited by the general lack of knowledge regarding the initial isotopic composition of active substances in commercially available formulations used by farmers. To address this limitation, we established a database aimed at cataloguing and disseminating isotopic signatures in commercial formulations to expand the use of pesticide CSIA. Our study involved the collection of 25 analytical standards and 120 commercial pesticide formulations from 23 manufacturers. Subsequently, 59 commercial formulations and 25 standards were extracted, and each of their active substance was analyzed for both δ13C (n = 84) and δ15N CSIA (n = 43). The extraction of pesticides did not cause significant isotope fractionation (Δ13C and Δ15N < 1‰). Incorporating existing literature data, stable carbon and nitrogen isotope signatures varied in a relatively narrow range among pesticide formulations for different pesticides (Δ13C and Δ15N < 10‰) and within different formulations for a single substance (Δ13C and Δ15N < 2‰). Overall, this suggests that pesticide CSIA is more suited for identifying pesticide transformation processes rather than differentiating pesticide sources. Moreover, an inter-laboratory comparison showed similar δ13C (Δ13C ≤ 1.2 ‰) for the targeted substances albeit varying GC-IRMS instruments. Insignificant carbon isotopic fractionation (Δ13C < 0.5‰) was observed after 4 years of storing the same pesticide formulations, confirming their viability for long-term storage at 4 °C and future inter-laboratory comparison exercises. Altogether, the ISOTOPEST database, in open access for public use and additional contributions, marks a significant advancement in establishing an environmentally relevant pesticide CSIA approach.


Assuntos
Praguicidas , Praguicidas/análise , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Fracionamento Químico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38324154

RESUMO

Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.

4.
Front Plant Sci ; 14: 1206047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636112

RESUMO

Under agroforestry practices, inter-specific facilitation between tree rows and cultivated alleys occurs when plants increase the growth of their neighbors especially under nutrient limitation. Owing to a coarse root architecture limiting soil inorganic phosphate (Pi) uptake, walnut trees (Juglans spp.) exhibit dependency on soil-borne symbiotic arbuscular mycorrhizal fungi that extend extra-radical hyphae beyond the root Pi depletion zone. To investigate the benefits of mycorrhizal walnuts in alley cropping, we experimentally simulated an agroforestry system in which walnut rootstocks RX1 (J. regia x J. microcarpa) were connected or not by a common mycelial network (CMN) to maize plants grown under two contrasting Pi levels. Mycorrhizal colonization parameters showed that the inoculum reservoir formed by inoculated walnut donor saplings allowed the mycorrhization of maize recipient roots. Relative to non-mycorrhizal plants and whatever the Pi supply, CMN enabled walnut saplings to access maize Pi fertilization residues according to significant increases in biomass, stem diameter, and expression of JrPHT1;1 and JrPHT1;2, two mycorrhiza-inducible phosphate transporter candidates here identified by phylogenic inference of orthologs. In the lowest Pi supply, stem height, leaf Pi concentration, and biomass of RX1 were significantly higher than in non-mycorrhizal controls, showing that mycorrhizal connections between walnut and maize roots alleviated Pi deficiency in the mycorrhizal RX1 donor plant. Under Pi limitation, maize recipient plants also benefited from mycorrhization relative to controls, as inferred from larger stem diameter and height, biomass, leaf number, N content, and Pi concentration. Mycorrhization-induced Pi uptake generated a higher carbon cost for donor walnut plants than for maize plants by increasing walnut plant photosynthesis to provide the AM fungus with carbon assimilate. Here, we show that CMN alleviates Pi deficiency in co-cultivated walnut and maize plants, and may therefore contribute to limit the use of chemical P fertilizers in agroforestry systems.

5.
Sci Total Environ ; 893: 164817, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37329912

RESUMO

The application of manures leads to the contamination of agricultural soils with veterinary antibiotics (VAs). These might exert toxicity on the soil microbiota and threaten environmental quality, and public health. We obtained mechanistic insights about the impact of three VAs, namely, sulfamethoxazole (SMX), tiamulin (TIA) and tilmicosin (TLM), on the abundance of key soil microbial groups, antibiotic resistance genes (ARGs) and class I integron integrases (intl1). In a microcosm study, we repeatedly treated two soils (differing in pH and VA dissipation capacity) with the studied VAs, either directly or via fortified manure. This application scheme resulted in accelerated dissipation of TIA, but not of SMX, and accumulation of TLM. Potential nitrification rates (PNR), and the abundance of ammonia-oxidizing microorganism (AOM) were reduced by SMX and TIA, but not by TLM. VAs strongly impacted the total prokaryotic and AOM communities, whereas manure addition was the main determinant of the fungal and protist communities. SMX stimulated sulfonamide resistance, while manure stimulated ARGs and horizontal gene transfer. Correlations identified opportunistic pathogens like Clostridia, Burkholderia-Caballeronia-Paraburkholderia, and Nocardioides as potential ARG reservoirs in soil. Our results provide unprecedented evidence about the effects of understudied VAs on soil microbiota and highlight risks posed by VA-contaminated manures. ENVIRONMENTAL IMPLICATION: The dispersal of veterinary antibiotics (VAs) through soil manuring enhances antimicrobial resistance (AMR) development and poses a threat to the environment and the public health. We provide insights about the impact of selected VAs on their: (i) microbially-mediated dissipation in soil; (ii) ecotoxicity on the soil microbial communities; (iii) capacity to stimulate AMR. Our results (i) demonstrate the effects of VAs and their application-mode on the bacterial, fungal, and protistan communities, and on the soil ammonia oxidizers; (ii) describe natural attenuation processes against VA dispersal, (iii) depict potential soil microbial AMR reservoirs, essential for the development of risk assessment strategies.


Assuntos
Antibacterianos , Solo , Solo/química , Antibacterianos/farmacologia , Sulfametoxazol/química , Esterco/microbiologia , Microbiologia do Solo , Amônia/farmacologia , Genes Bacterianos , Farmacorresistência Bacteriana/genética
6.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37309049

RESUMO

Microbacterium sp. C448, isolated from a soil regularly exposed to sulfamethazine (SMZ), can use various sulphonamide antibiotics as the sole carbon source for growth. The basis for the regulation of genes encoding the sulphonamide metabolism pathway, the dihydropteroate synthase sulphonamide target (folP), and the sulphonamide resistance (sul1) genes is unknown in this organism. In the present study, the response of the transcriptome and proteome of Microbacterium sp. C448 following exposure to subtherapeutic (33 µM) or therapeutic (832 µM) SMZ concentrations was evaluated. Therapeutic concentration induced the highest sad expression and Sad production, consistent with the activity of SMZ degradation observed in cellulo. Following complete SMZ degradation, Sad production tended to return to the basal level observed prior to SMZ exposure. Transcriptomic and proteomic kinetics were concomitant for the resistance genes and proteins. The abundance of Sul1 protein, 100-fold more abundant than FolP protein, did not change in response to SMZ exposure. Moreover, non-targeted analyses highlighted the increase of a deaminase RidA and a putative sulphate exporter expression and production. These two novel factors involved in the 4-aminophenol metabolite degradation and the export of sulphate residues formed during SMZ degradation, respectively, provided new insights into the Microbacterium sp. C448 SMZ detoxification process.


Assuntos
Microbacterium , Sulfametazina , Sulfametazina/farmacologia , Sulfametazina/química , Sulfametazina/metabolismo , Microbacterium/metabolismo , Proteômica , Antibacterianos/metabolismo , Sulfatos
7.
Artigo em Inglês | MEDLINE | ID: mdl-37099095

RESUMO

Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.

8.
Microb Ecol ; 85(4): 1463-1472, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35556154

RESUMO

The fertilization of agricultural soil by organic amendment that may contain antibiotics, like manure, can transfer bacterial pathogens and antibiotic-resistant bacteria to soil communities. However, the invasion by manure-borne bacteria in amended soil remains poorly understood. We hypothesized that this kind of process is both influenced by the soil properties (and those of its microbial communities) and by the presence of contaminants such as antibiotics used in veterinary care. To test that, we performed a microcosm experiment in which four different soils were amended or not with manure at an agronomical dose and exposed or not to the antibiotic sulfamethazine (SMZ). After 1 month of incubation, the diversity, structure, and composition of bacterial communities of the soils were assessed by 16S rDNA sequencing. The invasion of manure-borne bacteria was still perceptible 1 month after the soil amendment. The results obtained with the soil already amended in situ with manure 6 months prior to the experiment suggest that some of the bacterial invaders were established in the community over the long term. Even if differences were observed between soils, the invasion was mainly attributable to some of the most abundant OTUs of manure (mainly Firmicutes). SMZ exposure had a limited influence on soil microorganisms but our results suggest that this kind of contaminant can enhance the invasion ability of some manure-borne invaders.


Assuntos
Antibacterianos , Sulfametazina , Antibacterianos/farmacologia , Esterco/microbiologia , Solo , Microbiologia do Solo , Bactérias/genética
9.
Environ Sci Pollut Res Int ; 30(4): 9932-9944, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36068455

RESUMO

4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of ß-triketone herbicides in plants. This enzyme, involved in the tyrosine pathway, is also present in a wide range of living organisms, including microorganisms. Previous studies, focusing on a few strains and using high herbicide concentrations, showed that ß-triketones are able to inhibit microbial HPPD. Here, we measured the effect of agronomical doses of ß-triketone herbicides on soil bacterial strains. The HPPD activity of six bacterial strains was tested with 1× or 10× the recommended field dose of the herbicide sulcotrione. The selected strains were tested with 0.01× to 15× the recommended field dose of sulcotrione, mesotrione, and tembotrione. Molecular docking was also used to measure and model the binding mode of the three herbicides with the different bacterial HPPD. Our results show that responses to herbicides are strain-dependent with Pseudomonas fluorescens F113 HPPD activity not inhibited by any of the herbicide tested, when all three ß-triketone herbicides inhibited HPPD in Bacillus cereus ATCC14579 and Shewanella oneidensis MR-1. These responses are also molecule-dependent with tembotrione harboring the strongest inhibitory effect. Molecular docking also reveals different binding potentials. This is the first time that the inhibitory effect of ß-triketone herbicides is tested on environmental strains at agronomical doses, showing a potential effect of these molecules on the HPPD enzymatic activity of non-target microorganisms. The whole-cell assay developed in this study, coupled with molecular docking analysis, appears as an interesting way to have a first idea of the effect of herbicides on microbial communities, prior to setting up microcosm or even field experiments. This methodology could then largely be applied to other family of pesticides also targeting an enzyme present in microorganisms.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , Herbicidas , Herbicidas/farmacologia , Herbicidas/química , Simulação de Acoplamento Molecular , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Bactérias/metabolismo , Inibidores Enzimáticos
10.
Environ Pollut ; 306: 119382, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525509

RESUMO

Glyphosate (N-phosphonomethylglycine; GLP) and its main metabolite AMPA (aminomethylphosphonic acid), are frequently detected in relatively high concentrations in European agricultural topsoils. Glyphosate has a high sorption affinity, yet it can be detected occasionally in groundwater. We hypothesized that shrinkage cracks occurring after dry periods could facilitate GLP transport to greater depths where subsoil conditions slow further microbial degradation. To test this hypothesis, we simulated a heavy rainfall event (HRE) on a clay-rich arable soil. We applied 2.1 kg ha-1 of 100% 13C3, 15N-labeled GLP one day before the simulated rainfall event. Microbial degradation of translocated GLP over a 21-day period was assessed by quantifying 13C incorporation into phospholipid fatty acids. Microbial degradation potential and activity were determined by quantifying the abundance and expression of functional genes involved in the two known degradation pathways of GLP; to AMPA (goxA) or sarcosine (sarc). We confirmed that goxA transcripts were elevated in the range of 4.23 x 105 copy numbers g-1 soil only one day after application. The increase in AMPA associated with a rise in goxA transcripts and goxA-harboring microorganisms indicated that the degradation pathway to AMPA dominated. Based on 13C-enrichment 3 h after the HRE, fungi appeared to initiate glyphosate degradation. At later time points, Gram+-bacteria proved to be the main degraders due to their higher 13C-incorporation. Once GLP reached the subsoil, degradation continued but more slowly. By comparing GLP distribution and its microbial degradation in macropores and in the bulk soil, we demonstrated different time- and depth-dependent GLP degradation dynamics in macropores. This indicates the need for field studies in which soil properties relevant to GLP degradation are related to limiting environmental conditions, providing a realistic assessment of GLP fate in soils.


Assuntos
Herbicidas , Poluentes do Solo , Glicina/análogos & derivados , Herbicidas/análise , Solo , Poluentes do Solo/análise , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
12.
Sci Total Environ ; 831: 154674, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35318055

RESUMO

The reuse of water for agricultural practices becomes progressively more important due to increasing demands for a transition to a circular economy. Treated wastewater can be an alternative option of blue water used for the irrigation of crops but its risks need to be evaluated. This study assesses the uptake and metabolization of pharmaceuticals and personal care products (PPCPs) derived from treated wastewater into lettuce as well as the impact on root-associated bacteria under a realistic and worst-case scenario. Lettuce was grown in a controlled greenhouse and irrigated with water or treated wastewater spiked with and without a mixture of fourteen different PPCPs at 10 µg/L or 100 µg/L. After harvesting the plants, the same soil was reused for a consecutive cultivation campaign to test for the accumulation of PPCPs. Twelve out of fourteen spiked PPCPs were detected in lettuce roots, and thirteen in leaves. In roots, highest concentrations were measured for sucralose, sulfamethoxazole and citalopram, while sucralose, acesulfame and carbamazepine were the highest in leaves. Higher PPCP concentrations were found in lettuce roots irrigated with spiked treated wastewater than in those irrigated with spiked water. The absolute bacterial abundance remained stable over both cultivation campaigns and was not affected by any of the treatments (type of irrigation water (water vs. wastewater) nor concentration of PPCPs). However, the irrigation of lettuce with treated wastewater had a significant effect on the microbial α-diversity indices at the end of the second cultivation campaign, and modified the structure and community composition of root-associated bacteria at the end of both campaigns. Five and fourteen bacterial families were shown to be responsible for the observed changes at the end of the first and second cultivation campaign, respectively. Relative abundance of Haliangium and the clade Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium was significantly affected in response to PCPPs exposure. Caulobacter, Cellvibrio, Hydrogenophaga and Rhizobacter were significantly affected in microcosms irrigated with wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Irrigação Agrícola , Bactérias , Humanos , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
14.
Environ Sci Pollut Res Int ; 29(20): 29358-29367, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988809

RESUMO

The insecticide 14C-chlorpyrifos was found mineralized in a Tunisian soil with repeated exposure to it. From this soil, a bacterial strain was isolated that was able to grow in a minimal salt medium (MSM) supplemented with 25 mg L-1 of chlorpyrifos. It was characterized as Serratia rubidaea strain ABS 10 using morphological and biochemical analyses, as well as 16S rRNA sequencing. In a liquid culture, the S. rubidaea strain ABS 10 was able to dissipate chlorpyrifos almost entirely within 48 h of incubation. Although the S. rubidaea strain ABS 10 was able to grow in an MSM supplemented with chlorpyrifos and dissipate it in a liquid culture, it was not able to mineralize 14C-chlorpyrifos. Therefore, it can be concluded that the dissipation capability of this bacteria might be attributed to its capacity to adsorb CHL. It can also be ascribed to other reasons such as the formation of biogenic non-extractable residues. In both non-sterile and sterile soil inoculated with S. rubidaea strain ABS 10, chlorpyrifos was more rapidly dissipated than in controls with DT50 of 1.38 and 1.05 days, respectively.


Assuntos
Clorpirifos , Biodegradação Ambiental , Clorpirifos/análise , RNA Ribossômico 16S , Serratia , Solo
15.
Environ Int ; 159: 107047, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923370

RESUMO

Antimicrobial resistance (AMR) is a major global public health concern, shared by a large number of human and animal health actors. Within the framework of a One Health approach, actions should be implemented in the environmental realm, as well as the human and animal realms. The Government of France commissioned a report to provide policy and decision makers with an evidential basis for recommending or taking future actions to mitigate AMR in the environment. We first examined the mechanisms that underlie the emergence and persistence of antimicrobial resistance in the environment. This report drew up an inventory of the contamination of aquatic and terrestrial environments by AMR and antibiotics, anticipating that the findings will be representative of some other high-income countries. Effluents of wastewater treatment plants were identified as the major source of contamination on French territory, with spreading of organic waste products as a more diffuse and incidental contamination of aquatic environments. A limitation of this review is the heterogeneity of available data in space and time, as well as the lack of data for certain sources. Comparing the French Measured Environmental Concentrations (MECs) with predicted no effect concentrations (PNECs), fluoroquinolones and trimethoprim were identified as representing high and medium risk of favoring the selection of resistant bacteria in treated wastewater and in the most contaminated rivers. All other antibiotic molecules analyzed (erythromycin, clarithromycin, azithromycin, tetracycline) were at low risk of resistance selection in those environments. However, the heterogeneity of the data available impairs their full exploitation. Consequently, we listed indicators to survey AMR and antibiotics in the environment and recommended the harmonization of sampling strategies and endpoints for analyses. Finally, the objectives and methods used for the present work could comprise a useful example for how national authorities of countries sharing common socio-geographic characteristics with France could seek to better understand and define the environmental dimension of AMR in their particular settings.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Animais , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias/genética , Farmacorresistência Bacteriana/genética , Rios , Águas Residuárias/análise
16.
Environ Sci Pollut Res Int ; 29(20): 29236-29243, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34117546

RESUMO

The effect of wastewater irrigation on the diversity and composition of bacterial communities of soil mesocosms planted with lettuces was studied over an experiment made of five cultivation campaigns. A limited effect of irrigation with either raw or treated wastewater was observed in both α-diversity and ß-diversity of soil bacterial communities. However, the irrigation with wastewater fortified with a complex mixture of fourteen relevant chemicals at 10 µg/L each, including pharmaceutical, biocide, and pesticide active substances, led to a drift in the composition of soil bacterial community. One hundred operational taxonomic units (OTUs) were identified as responsible for changes between treated and fortified wastewater irrigation treatments. Our findings indicate that under a realistic agronomical scenario, the irrigation of vegetables with domestic (treated or raw) wastewater has no effect on soil bacterial communities. Nevertheless, under the worst-case scenario tested here (i.e., wastewater fortified with a mixture of chemicals), non-resilient changes were observed suggesting that continuous/repeated irrigation with wastewater could lead to the accumulation of contaminants in soil and induce changes in bacterial communities with unknown functional consequences.


Assuntos
Solo , Águas Residuárias , Irrigação Agrícola , Bactérias , Solo/química , Microbiologia do Solo , Águas Residuárias/química
17.
Ecotoxicol Environ Saf ; 223: 112595, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390984

RESUMO

The implementation of the new Water Reuse regulation in the European Union brings to the forefront the need to evaluate the risks of using wastewater for crop irrigation. Here, a two-tier ecotoxicological risk assessment was performed to evaluate the fate of wastewater-borne micropollutants in soil and their ecotoxicological impact on plants and soil microorganisms. To this end, two successive cultivation campaigns of lettuces were irrigated with wastewater (at agronomical dose (not spiked) and spiked with a mixture of 14 pharmaceuticals at 10 and 100 µg/L each) in a controlled greenhouse experiment. Over the two cultivation campaigns, an accumulation of PPCPs was observed in soil microcosms irrigated with wastewater spiked with 100 µg/L of PPCPs with the highest concentrations detected for clarithromycin, hydrochlorothiazide, citalopram, climbazole and carbamazepine. The abundance of bacterial and fungal communities remained stable over the two cultivation campaigns and was not affected by any of the irrigation regimes applied. Similarly, no changes were observed in the abundance of ammonium oxidizing archaea (AOA) and bacteria (AOB), nor in clade A of commamox no matter the cultivation campaign or the irrigation regime considered. Only a slight increase was detected in clade B of commamox bacteria after the second cultivation campaign. Sulfamethoxazole-resistant and -degrading bacteria were not impacted either. The irrigation regimes had only a limited effect on the bacterial evenness. However, in response to wastewater irrigation the structure of soil bacterial community significantly changed the relative abundance of Acidobacteria, Chloroflexi, Verrucomicrobia, Beta-, Gamma- and Deltaprotebacteria. Twenty-eight operational taxonomic units (OTUs) were identified as responsible for the changes observed within the bacterial communities of soils irrigated with wastewater or with water. Interestingly, the relative abundance of these OTUs was similar in soils irrigated with either spiked or non-spiked irrigation solutions. This indicates that under both agronomical and worst-case scenario the mixture of fourteen PPCPs had no effect on soil bacterial community.


Assuntos
Solo , Águas Residuárias , Irrigação Agrícola , Medição de Risco , Microbiologia do Solo , Águas Residuárias/análise
18.
Front Microbiol ; 12: 643719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025605

RESUMO

Since the early 1920s, the intensive use of antibiotics has led to the contamination of the aquatic environment through diffuse sources and wastewater effluents. The antibiotics commonly found in surface waters include sulfamethoxazole (SMX) and sulfamethazine (SMZ), which belong to the class of sulfonamides, the oldest antibiotic class still in use. These antibiotics have been detected in all European surface waters with median concentrations of around 50 ng L-1 and peak concentrations of up to 4-6 µg L-1. Sulfonamides are known to inhibit bacterial growth by altering microbial production of folic acid, but sub-lethal doses may trigger antimicrobial resistance, with unknown consequences for exposed microbial communities. We investigated the effects of two environmentally relevant concentrations (500 and 5,000 ng L-1) of SMZ and SMX on microbial activity and structure of periphytic biofilms in stream mesocosms for 28 days. Measurement of sulfonamides in the mesocosms revealed contamination levels of about half the nominal concentrations. Exposure to sulfonamides led to slight, transitory effects on heterotrophic functions, but persistent effects were observed on the bacterial structure. After 4 weeks of exposure, sulfonamides also altered the autotrophs in periphyton and particularly the diversity, viability and cell integrity of the diatom community. The higher concentration of SMX tested decreased both diversity (Shannon index) and evenness of the diatom community. Exposure to SMZ reduced diatom species richness and diversity. The mortality of diatoms in biofilms exposed to sulfonamides was twice that in non-exposed biofilms. SMZ also induced an increase in diatom teratologies from 1.1% in non-exposed biofilms up to 3% in biofilms exposed to SMZ. To our knowledge, this is the first report on the teratological effects of sulfonamides on diatoms within periphyton. The increase of both diatom growth rate and mortality suggests a high renewal of diatoms under sulfonamide exposure. In conclusion, our study shows that sulfonamides can alter microbial community structures and diversity at concentrations currently present in the environment, with unknown consequences for the ecosystem. The experimental set-up presented here emphasizes the interest of using natural communities to increase the ecological realism of ecotoxicological studies and to detect potential toxic effects on non-target species.

19.
Front Microbiol ; 12: 643087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841365

RESUMO

Chronic and repeated exposure of environmental bacterial communities to anthropogenic antibiotics have recently driven some antibiotic-resistant bacteria to acquire catabolic functions, enabling them to use antibiotics as nutritive sources (antibiotrophy). Antibiotrophy might confer a selective advantage facilitating the implantation and dispersion of antibiotrophs in contaminated environments. A microcosm experiment was conducted to test this hypothesis in an agroecosystem context. The sulfonamide-degrading and resistant bacterium Microbacterium sp. C448 was inoculated in four different soil types with and without added sulfamethazine and/or swine manure. After 1 month of incubation, Microbacterium sp. (and its antibiotrophic gene sadA) was detected only in the sulfamethazine-treated soils, suggesting a low competitiveness of the strain without antibiotic selection pressure. In the absence of manure and despite the presence of Microbacterium sp. C448, only one of the four sulfamethazine-treated soils exhibited mineralization capacities, which were low (inferior to 5.5 ± 0.3%). By contrast, manure addition significantly enhanced sulfamethazine mineralization in all the soil types (at least double, comprised between 5.6 ± 0.7% and 19.5 ± 1.2%). These results, which confirm that the presence of functional genes does not necessarily ensure functionality, suggest that sulfamethazine does not necessarily confer a selective advantage on the degrading strain as a nutritional source. 16S rDNA sequencing analyses strongly suggest that sulfamethazine released trophic niches by biocidal action. Accordingly, manure-originating bacteria and/or Microbacterium sp. C448 could gain access to low-competition or competition-free ecological niches. However, simultaneous inputs of manure and of the strain could induce competition detrimental for Microbacterium sp. C448, forcing it to use sulfamethazine as a nutritional source. Altogether, these results suggest that the antibiotrophic strain studied can modulate its sulfamethazine-degrading function depending on microbial competition and resource accessibility, to become established in an agricultural soil. Most importantly, this work highlights an increased dispersal potential of antibiotrophs in antibiotic-polluted environments, as antibiotics can not only release existing trophic niches but also form new ones.

20.
J Hazard Mater ; 416: 125740, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848793

RESUMO

One of the major problems with pesticides is linked to the non-negligible proportion of the sprayed active ingredient that does not reach its intended target and contaminates environmental compartments. Here, we have implemented and provided new insights to the preventive bioremediation process based on the simultaneous application of the pesticide with pesticide-degrading microorganisms to reduce the risk of leaching into the environment. This study pioneers such a practice, in an actual farming context. The 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) and one of its bacterial mineralizing-strains (Cupriavidus necator JMP134) were used as models. The 2,4-D biodegradation was studied in soil microcosms planted with sensitive (mustard) and insensitive (wheat) plants. Simultaneous application of a 2,4-D commercial formulation (DAM®) at agricultural recommended doses with 105 cells.g-1 dw of soil of the JMP134 strain considerably accelerated mineralization of the herbicide since its persistence was reduced threefold for soil supplemented with the mineralizing bacterium without reducing the herbicide efficiency. Furthermore, the inoculation of the Cupriavidus necator strain did not significantly affect the α- and ß-diversity of the bacterial community. By tackling the contamination immediately at source, the preventive bioremediation process proves to be an effective and promising way to reduce environmental contamination by agricultural pesticides.


Assuntos
Herbicidas , Praguicidas , Poluentes do Solo , Ácido 2,4-Diclorofenoxiacético , Agricultura , Biodegradação Ambiental , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...